Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(1): 327-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123890

RESUMO

Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.


Assuntos
Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Rejuvenescimento , Camundongos Endogâmicos C57BL , Envelhecimento/fisiologia , Parabiose
2.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107603

RESUMO

Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length or loss of shelterin complex. The blind mole-rat (Spalax) is a subterranean rodent with exceptional longevity, and its cells demonstrate an uncoupling of senescence and SASP inflammatory components. Herein, we evaluated Spalax relative telomere length, telomerase activity, and shelterin expression, along with telomere-associated DNA damage foci (TAFs) levels with cell passage. We show that telomeres shorten in Spalax fibroblasts similar to the process in rats, and that the telomerase activity is lower. Moreover, we found lower DNA damage foci at the telomeres and a decline in the mRNA expression of two shelterin proteins, known as ATM/ATR repressors. Although additional studies are required for understanding the underling mechanism, our present results imply that Spalax genome protection strategies include effective telomere maintenance, preventing early cellular senescence induced by persistent DDR, thereby contributing to its longevity and healthy aging.


Assuntos
Spalax , Telomerase , Animais , Encurtamento do Telômero/genética , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Spalax/genética , Spalax/metabolismo , Longevidade/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Complexo Shelterina
3.
Aging Cell ; 22(5): e13802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36864750

RESUMO

The intestinal epithelium consists of cells derived from continuously cycling Lgr5hi intestinal stem cells (Lgr5hi ISCs) that mature developmentally in an ordered fashion as the cells progress along the crypt-luminal axis. Perturbed function of Lgr5hi ISCs with aging is documented, but the consequent impact on overall mucosal homeostasis has not been defined. Using single-cell RNA sequencing, the progressive maturation of progeny was dissected in the mouse intestine, which revealed that transcriptional reprogramming with aging in Lgr5hi ISCs retarded the maturation of cells in their progression along the crypt-luminal axis. Importantly, treatment with metformin or rapamycin at a late stage of mouse lifespan reversed the effects of aging on the function of Lgr5hi ISCs and subsequent maturation of progenitors. The effects of metformin and rapamycin overlapped in reversing changes of transcriptional profiles but were also complementary, with metformin more efficient than rapamycin in correcting the developmental trajectory. Therefore, our data identify novel effects of aging on stem cells and the maturation of their daughter cells contributing to the decline of epithelial regeneration and the correction by geroprotectors.


Assuntos
Intestinos , Metformina , Camundongos , Animais , Células-Tronco , Mucosa Intestinal , Senescência Celular/genética , Envelhecimento/genética , Metformina/farmacologia , Receptores Acoplados a Proteínas G/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768636

RESUMO

Evidence continues to accrue that aging and its diseases can be delayed by pharmacologic and dietary strategies that target the underlying hallmarks of the aging process. However, identifying simple, safe, and effective dietary strategies involving the incorporation of whole foods that may confer some protection against the aging process is also needed. Recent observational studies have suggested that nut consumption can reduce mortality risk in humans. Among these, walnuts are particularly intriguing, given their high content of n-3 fatty acids, fiber, and antioxidant and anti-inflammatory compounds. To this end, 12-month-old male CB6F1 mice were provided either a defined control low-fat diet (LFD), a control high-fat diet (HFD), or an isocaloric HFD containing 7.67% walnuts by weight (HFD + W), and measures of healthspan and related biochemical markers (n = 10-19 per group) as well as survival (n = 20 per group) were monitored. Mice provided the HFD or HFD + W demonstrated marked weight gain, but walnuts lowered baseline glucose (p < 0.05) and tended to temper the effects of HFD on liver weight gain (p < 0.05) and insulin tolerance (p = 0.1). Additional assays suggested a beneficial effect on some indicators of health with walnut supplementation, including preservation of exercise capacity and improved short-term working memory, as determined by Y maze (p = 0.02). However, no effect was observed via any diet on inflammatory markers, antioxidant capacity, or survival (p = 0.2). Ingenuity Pathway Analysis of the hippocampal transcriptome identified two processes predicted to be affected by walnuts and potentially linked to cognitive function, including estrogen signaling and lipid metabolism, with changes in the latter confirmed by lipidomic analysis. In summary, while walnuts did not significantly improve survival on a HFD, they tended to preserve features of healthspan in the context of a metabolic stressor with aging.


Assuntos
Juglans , Humanos , Masculino , Camundongos , Animais , Idoso , Lactente , Juglans/química , Nozes/química , Dieta Hiperlipídica/efeitos adversos , Lipidômica , Antioxidantes/análise , Aumento de Peso , Camundongos Endogâmicos C57BL
5.
Front Aging ; 3: 993658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276605

RESUMO

Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.

6.
Geroscience ; 44(5): 2491-2508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798912

RESUMO

Insulin appears to exert salutary effects in the central nervous system (CNS). Thus, brain insulin resistance has been proposed to play a role in brain aging and dementia but is conceptually complex and unlikely to fit classic definitions established in peripheral tissues. Thus, we sought to characterize brain insulin responsiveness in young (4-5 months) and old (24 months) FBN male rats using a diverse set of assays to determine the extent to which insulin effects in the CNS are impaired with age. When performing hyperinsulinemic-euglycemic clamps in rats, intracerebroventricular (ICV) infusion of insulin in old animals improved peripheral insulin sensitivity by nearly two-fold over old controls and comparable to young rats, suggesting preservation of this insulin-triggered response in aging per se (p < 0.05). We next used an imaging-based approach by comparing ICV vehicle versus insulin and performed resting state functional magnetic resonance imaging (rs-fMRI) to evaluate age- and insulin-related changes in network connectivity within the default mode network. In aging, lower connectivity between the mesial temporal (MT) region and other areas, as well as reduced MT signal complexity, was observed in old rats, which correlated with greater cognitive deficits in old. Despite these stark differences, ICV insulin failed to elicit any significant alteration to the BOLD signal in young rats, while a significant deviation of the BOLD signal was observed in older animals, characterized by augmentation in regions of the septal nucleus and hypothalamus, and reduction in thalamus and nucleus accumbens. In contrast, ex vivo stimulation of hippocampus with 10 nM insulin revealed increased Akt activation in young (p < 0.05), but not old rats. Despite similar circulating levels of insulin and IGF-1, cerebrospinal fluid concentrations of these ligands were reduced with age. Thus, these data highlight the complexity of capturing brain insulin action and demonstrate preserved or heightened brain responses to insulin with age, despite dampened canonical signaling, thereby suggesting impaired CNS input of these ligands may be a feature of reduced brain insulin action, providing further rationale for CNS replacement strategies.


Assuntos
Resistência à Insulina , Insulina , Masculino , Ratos , Animais , Encéfalo , Envelhecimento/fisiologia , Resistência à Insulina/fisiologia , Hipocampo/fisiologia
7.
Aging (Albany NY) ; 14(7): 3325-3328, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35417855

RESUMO

Parabiosis is a well-established method to facilitate a shared blood supply between two conjoined animals. In particular, the pairing of mice of dissimilar ages, termed heterochronic parabiosis, has been used extensively for differentiating cell autonomous and non-autonomous mechanisms of aging. Analysis of heterochronic parabionts also has helped to identify individual circulating factors that may act as either pro- or anti-geronics. Heterochronic parabiosis also has proven to be a valuable experimental system to evaluate the effects of specific hallmarks of aging on the process of aging. For example, heterochronic parabiosis was used recently to examine whether cellular senescence was driven via cell autonomous and/or non-autonomous mechanisms. As anticipated, markers of cellular senescence were elevated in old isochronically-paired mice relative to young controls. However, compared to old isochronically paired mice, the senescent cell burden was reduced in multiple tissues of old parabionts joined with young mice. This suggests that the rejuvenation of cells and tissues in old mice by exposure to young blood could be mediated, in part, through suppression or immune clearance of senescent cells. Conversely, young heterochronic parabionts showed increased markers of cellular senescence, demonstrating that exposure to an old circulation is able to drive senescence through a cell non-autonomous mechanism(s), likely contributing to accelerated aging in the young mice. Thus, heterochronic parabiosis is still an important methodology that should continue to be leveraged for evaluating other hallmarks of aging and their mechanisms.


Assuntos
Senescência Celular , Parabiose , Envelhecimento , Animais , Biomarcadores , Camundongos , Rejuvenescimento
8.
Aging Pathobiol Ther ; 4(1): 19-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475259

RESUMO

Physical resilience, the capacity to respond to and recover from a stressful event, declines with advancing age. Individuals respond differently to physical stressors across their lifespans. While the biological underpinnings of resilience remain unclear, a plausible determinant is the capacity of an individual's cellular and molecular levels to return to homeostasis after a physical challenge. Impaired resilience may not only be a consequence of aging but could also be a contributing factor to the aging process. Therefore, resilience at relatively younger ages could be predictive of future health and lifespan. By utilizing standardized physical challenges and measuring stress response patterns, the relative resilience of individuals can be quantified and classified. Current preclinical research suggests that several physical stressors could be used to measure resilience in clinical aging studies. A mechanistic understanding of why some individuals are more resilient to physical stressors than others could help identify protective factors and therapeutic ways to promote healthy aging.

9.
Geroscience ; 44(2): 953-981, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124764

RESUMO

Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.


Assuntos
Parabiose , Transcriptoma , Envelhecimento/genética , Envelhecimento/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso
10.
Front Aging Neurosci ; 13: 711524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34924992

RESUMO

Aging is a major risk factor for late-onset Alzheimer's disease (LOAD). How aging contributes to the development of LOAD remains elusive. In this study, we examined multiple large-scale transcriptomic datasets from both normal aging and LOAD brains to understand the molecular interconnection between aging and LOAD. We found that shared gene expression changes between aging and LOAD are mostly seen in the hippocampal and several cortical regions. In the hippocampus, the expression of phosphoprotein, alternative splicing and cytoskeleton genes are commonly changed in both aging and AD, while synapse, ion transport, and synaptic vesicle genes are commonly down-regulated. Aging-specific changes are associated with acetylation and methylation, while LOAD-specific changes are more related to glycoprotein (both up- and down-regulations), inflammatory response (up-regulation), myelin sheath and lipoprotein (down-regulation). We also found that normal aging brain transcriptomes from relatively young donors (45-70 years old) clustered into several subgroups and some subgroups showed gene expression changes highly similar to those seen in LOAD brains. Using brain transcriptomic datasets from another cohort of older individuals (>70 years), we found that samples from cognitively normal older individuals clustered with the "healthy aging" subgroup while AD samples mainly clustered with the "AD similar" subgroups. This may imply that individuals in the healthy aging subgroup will likely remain cognitively normal when they become older and vice versa. In summary, our results suggest that on the transcriptome level, aging and LOAD have strong interconnections in some brain regions in a subpopulation of cognitively normal aging individuals. This supports the theory that the initiation of LOAD occurs decades earlier than the manifestation of clinical phenotype and it may be essential to closely study the "normal brain aging" to identify the very early molecular events that may lead to LOAD development.

11.
Geroscience ; 43(5): 2167-2182, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463901

RESUMO

The overarching mission of the Einstein-Nathan Shock Center (E-NSC) is to make scientific discoveries in geroscience, leveraging on the expertise in our center in 6 out of the 7 pillars of aging, and to translate their effects towards drug discovery. The relevance of this basic biology of aging discoveries to humans will be confirmed through the unique gero-human resource at E-NSC. This is achieved through services provided by E-NSC, connectivity among its members, attracting worldwide investigators, and providing them with the opportunities to become future leaders. The two central components of the E-NSC are (a) cutting-edge research programs and (b) unique E-NSC research support cores. E-NSC scientists lead NIH-supported cutting-edge research programs that integrate key hallmarks of aging including proteostasis/autophagy, metabolism/inflammaging, genetic/epigenetics, stem cells/regeneration, and translational aging/longevity. Since the inception of the E-NSC, the well-integrated, collaborative, and innovative nature of the multiple supporting state-of-the-art E-NSC research cores form the bedrock of research success at the E-NSC. The three state-of-the-art E-NSC research cores, (i) Proteostasis of Aging Core (PAC), (ii) the Health Span Core (HSC), and (iii) the Human Multi-Omics Core (HMOC), have allowed impressive expansion of translational biological research programs. Expansion was facilitated through the wealth of data coming from genomics/proteomics and metabolomic analysis on human longevity studies, due to access to a variety of biological samples from elderly subjects in clinical trials with aging-targeting drugs, and new drug design services via the PAC to target the hallmarks of aging.


Assuntos
Envelhecimento , Gerociência , Idoso , Autofagia , Humanos , Longevidade , Proteostase
12.
Diabetes ; 70(10): 2237-2249, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34285117

RESUMO

Similar to insulin, central administration of IGF-1 can suppress hepatic glucose production (HGP), but it is unclear whether this effect is mediated via insulin receptors (InsRs) or IGF-1 receptors (IGF-1Rs) in the brain. To this end, we used pharmacologic and genetic approaches in combination with hyperinsulinemic-euglycemic clamps to decipher the role of these receptors in mediating central effects of IGF-1 and insulin on HGP. In rats, we observed that intracerebroventricular (ICV) administration of IGF-1 or insulin markedly increased the glucose infusion rate (GIR) by >50% and suppressed HGP (P < 0.001). However, these effects were completely prevented by preemptive ICV infusion with an IGF-1R and InsR/IGF-1R hybrid (HybridR) blocking antibody. Likewise, ICV infusion of the InsR antagonist, S961, which also can bind HybridRs, interfered with the ability of central insulin, but not IGF-1, to increase the GIR. Furthermore, hyperinsulinemic clamps in mice lacking IGF-1Rs in AgRP neurons revealed ∼30% reduction in the GIR in knockout animals, which was explained by an impaired ability of peripheral insulin to completely suppress HGP (P < 0.05). Signaling studies further revealed an impaired ability of peripheral insulin to trigger ribosomal S6 phosphorylation or phosphatidylinositol (3,4,5)-trisphosphate production in AgRP neurons lacking IGF-1Rs. In summary, these data suggest that attenuation of IGF-1R signaling in the mediobasal hypothalamus, and specifically in AgRP neurons, can phenocopy impaired regulation of HGP as previously demonstrated in mice lacking InsRs in these cells, suggesting a previously unappreciated role for IGF-1Rs and/or HybridRs in the regulation of central insulin/IGF-1 signaling in glucose metabolism.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Neurônios/fisiologia , Adulto , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Células Cultivadas , Técnica Clamp de Glucose , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraventriculares , Insulina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Elife ; 92020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289482

RESUMO

Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17ß-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.


Assuntos
Estradiol/fisiologia , Receptor alfa de Estrogênio/fisiologia , Longevidade , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fígado/fisiologia , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Ratos
15.
Aging (Albany NY) ; 12(12): 12285-12304, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527988

RESUMO

Whether disc aging is influenced by factors beyond its local environment is an important unresolved question. Here we performed heterochronic parabiosis in mice to study the effects of circulating factors in young and old blood on age-associated intervertebral disc degeneration. Compared to young isochronic pairs (Y-Y), young mice paired with old mice (Y-O) showed significant increases in levels of disc MMP-13 and ADAMTS4, aggrecan fragmentation, and histologic tissue degeneration, but negligible changes in cellular senescence markers (p16INK4a, p21Cip1). Compared to old isochronic pairs (O-O), old mice paired with young mice (O-Y) exhibited a significant decrease in expression of cellular senescence markers (p16, p21, p53), but only marginal decreases in the levels of disc MMP-13 and ADAMTS4, aggrecan fragmentation, and histologic degeneration. Thus, exposing old mice to young blood circulation greatly suppressed disc cellular senescence, but only slightly decreased disc matrix imbalance and degeneration. Conversely, exposing young mice to old blood accelerated their disc matrix imbalance and tissue degeneration, with little effects on disc cellular senescence. Thus, non-cell autonomous effects of circulating factors on disc cellular senescence and matrix homeostasis are complex and suggest that disc matrix homeostasis is modulated by systemic factors and not solely through local disc cellular senescence.


Assuntos
Envelhecimento/fisiologia , Senescência Celular/fisiologia , Degeneração do Disco Intervertebral/sangue , Disco Intervertebral/patologia , Proteína ADAMTS4/sangue , Adulto , Idade de Início , Idoso , Agrecanas/sangue , Agrecanas/metabolismo , Envelhecimento/sangue , Animais , Modelos Animais de Doenças , Feminino , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/fisiopatologia , Degeneração do Disco Intervertebral/prevenção & controle , Masculino , Metaloproteinase 13 da Matriz/sangue , Camundongos
16.
Geroscience ; 42(3): 951-961, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285290

RESUMO

An increase in the burden of senescent cells in tissues with age contributes to driving aging and the onset of age-related diseases. Genetic and pharmacologic elimination of senescent cells extends both health span and life span in mouse models. Heterochronic parabiosis in mice has been used to identify bloodborne, circulating pro- and anti-geronic factors able to drive or slow aging, respectively. However, whether factors in the circulation also regulate senescence is unknown. Here, we measured the expression of senescence and senescence-associated secretory phenotype (SASP) markers in multiple tissues from 4- to 18-month-old male mice that were either isochronically or heterochronically paired for 2 months. In heterochronic parabionts, the age-dependent increase in senescence and SASP marker expression was reduced in old mice exposed to a young environment, while senescence markers were concurrently increased in young heterochronic parabionts. These findings were supported by geropathology analysis using the Geropathology Grading Platform that showed a trend toward reduced hepatic lesions in old heterochronic parabionts. In summary, these results demonstrate that senescence is regulated in part by circulating geronic factors and suggest that one of the possible mediators of the rejuvenating effects with heterochronic parabiosis is through the reduction of the senescent cell burden.


Assuntos
Senescência Celular , Parabiose , Envelhecimento , Animais , Biomarcadores , Modelos Animais de Doenças , Masculino , Camundongos
17.
Diabetes ; 69(6): 1140-1148, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217610

RESUMO

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this "glucose effectiveness" is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.


Assuntos
Glicemia/fisiologia , Glucose/metabolismo , Canais KATP/metabolismo , Adulto , Animais , Diazóxido/administração & dosagem , Diazóxido/farmacocinética , Diazóxido/farmacologia , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnica Clamp de Glucose , Glibureto/administração & dosagem , Glibureto/farmacocinética , Glibureto/farmacologia , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Canais KATP/genética , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Adulto Jovem
18.
Geroscience ; 42(2): 727-748, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32172434

RESUMO

Aging-induced functional and phenotypic alterations of the vasculature (e.g., endothelial dysfunction, oxidative stress) have a central role in morbidity and mortality of older adults. It has become apparent in recent years that cell autonomous mechanisms alone are inadequate to explain all aspects of vascular aging. The present study was designed to test the hypothesis that age-related changes in circulating anti-geronic factors contribute to the regulation of vascular aging processes in a non-cell autonomous manner. To test this hypothesis, through heterochronic parabiosis we determined the extent, if any, to which endothelial function, vascular production of ROS, and shifts in the vascular transcriptome (RNA-seq) are modulated by the systemic environment. We found that in aortas isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] acetylcholine-induced endothelium-dependent relaxation was impaired and ROS production (dihydroethidium fluorescence) was increased as compared with those in aortas from young isochronic parabiont (6-month-old) mice [Y-(Y)]. The presence of young blood derived from young parabionts significantly improved endothelium-dependent vasorelaxation and attenuated ROS production in vessels of heterochronic parabiont aged [A-(Y)] mice. In aortas derived from heterochronic parabiont young [Y-(A)] mice, acetylcholine-induced relaxation and ROS production were comparable with those in aortas derived from Y-(Y) mice. Using RNA-seq we assessed transcriptomic changes in the aortic arch associated with aging and heterochronic parabiosis. We identified 347 differentially expressed genes in A-(A) animals compared with Y-(Y) controls. We have identified 212 discordant genes, whose expression levels differed in the aged phenotype, but have shifted back toward the young phenotype by the presence of young blood in aged A-(Y) animals. Pathway analysis shows that vascular protective effects mediated by young blood-regulated genes include mitochondrial rejuvenation. In conclusion, a relatively short-term exposure to young blood can rescue vascular aging phenotypes, including attenuation of oxidative stress, mitochondrial rejuvenation, and improved endothelial function. Our findings provide additional evidence supporting the significant plasticity of vascular aging and evidence for the existence of anti-geronic factors capable of exerting rejuvenating effects on the aging vasculature.


Assuntos
Estresse Oxidativo , Parabiose , Rejuvenescimento , Idoso , Animais , Endotélio , Humanos , Camundongos , Camundongos Endogâmicos C57BL
19.
J Gerontol A Biol Sci Med Sci ; 75(3): 405-415, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31894235

RESUMO

As 2020 is "The Year of the Rat" in the Chinese astrological calendar, it seems an appropriate time to consider whether we should bring back the laboratory rat to front-and-center in research on the basic biology of mammalian aging. Beginning in the 1970s, aging research with rats became common, peaking in 1992 but then declined dramatically by 2018 as the mouse became preeminent. The purpose of this review is to highlight some of the historical contributions as well as current advantages of the rat as a mammalian model of human aging, because we suspect at least a generation of researchers is no longer aware of this history or these advantages. Herein, we compare and contrast the mouse and rat in the context of several biological domains relevant to their use as appropriate models of aging: phylogeny/domestication, longevity interventions, pathology/physiology, and behavior/cognition. It is not the goal of this review to give a complete characterization of the differences between mice and rats, but to provide important examples of why using rats as well as mice is important to advance our understanding of the biology of aging.


Assuntos
Envelhecimento/fisiologia , Animais de Laboratório/fisiologia , Mamíferos/fisiologia , Camundongos/fisiologia , Modelos Animais , Ratos/fisiologia , Animais , Pesquisa Biomédica , Feminino , Masculino
20.
Sci Rep ; 9(1): 13992, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570744

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...